Signals, systems,
acoustics and the ear

Week 5

The peripheral auditory
system:
The ear as a signal processor
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as a collection of ‘systems’,
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to the brain
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A quick
summary
of the
auditory
periphery:

Three
main
divisions:
Outer,
Middle and
Inner ear



Outer ear

e Funnel shaped pinna “collects”
sounds from environment

e Pinna and ear canal affect the
frequency content of sounds
— filtering

e Having two ears (instead of one)
is important for sound localisation

— differences between what each ear
‘hears’



Sounds are (often) more intense, and
sooner to reach, the closer ear
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Measure sound fields at
entrance to both ear canals
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Wavelength

This is not a waveform - why?!

NS AN
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1 Wavelength

wavelength = distance = time x c (speed of sound)
wavelength = period x ¢ = ¢/f
speed of sound = 344 m/s (770 mph)
So for 1 kHz, wavelength = .344 m ~ 13.5 in



Why is wavelength important?

e Objects only have an effect on
sinusoids whose wavelength is
comparable to the dimensions of the
object.

e S0, a 100 Hz sinusoid will not be
affected by any human body part
because its wavelength is ...

~ 3.44 m or > 11 feet
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Acoustic effects of ear canal

A tube closed at one end and open at
the other.
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Need to
measure
sounds down
in the ear
canal
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Acoustic effects of ear canal
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Over this frequency range, the ear canal
is @ simple resonator
(with more resonances at high
frequencies)
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Think of
nput the ear
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a tube
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Output
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amplitude response of an
acoustic tube closed at one
end and open at the other

A series of resonances
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Acoustic effects of ear canal
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Original measurements plus simple
model
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Why cupping a hand behind
your ear helps
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Frequency responses for:

ear-canal entrance near the ear drum
free-field pressure ear-canal entrance

Total Effect:
near the ear drum
free-field pressure
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Move on to the middle ear

e Provides coupling Axisof - Ligament
from eardrum to
Malleus
cochlea. i
(pars flaccida) Incus
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Figure 4.2. Cross section through the human middle ear. The oval window vibrates
with three-fourths the amplitude of the eardrum center. Note that the axis of rotation
passes through the main concentration of ossicular mass. The pars flaccida is a small,
limp section of the eardrum that is unconnected to the ossicles. It appears to have
several functions, including the release of static pressure within the middle ear (Teoh
et al., 1997). (Adapted from Goodhill, 1979.) 20



Frequency response of the middle ear

30
. . 1 /N
pressure in cochlear fluids — / \
pressure at ear drum % 20 // ~
= \
‘©
. . 940
What kind of filteris @ /
this? @
2 /
] S 0 /
bandpass filter o /
/
-10 /
10 100 1,000 10,000

Frequency - Hz

21



oving into the inner ear ...
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60 Hz sine wave

Basilar membrane
————— vibration to
sinusoids varies with
frequency because
its mechanical
properties vary
along its length:
) wider at the apex
(most responsive to
low frequencies) and
stiffer at the base
(most responsive to
high frequencies) .

2000 Hz sine wave
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The envelope of the travelling wave
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A crucial distinction
excitation pattern vs frequency response

e Excitation pattern — the vibration pattern across
the basilar membrane to a single sound.

— Input = 1 sound.
— Measure at many places along the BM.

e Related to a spectrum (amplitude by frequency).
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A crucial distinction
excitation pattern vs frequency response

e Frequency response — the amount of vibration
shown by a particular place on the BM to
sinusoids of varying frequency.

— Input = many sinusoids.
— Measure at a single place on the BM.
— Band-pass filters at each position along the basilar

membrane.
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Modern measurements of
basilar membrane movement

e Measure the movement of one point
on the BM at a time (frequency
response).

e Technically difficult, although lots
easier than before!

e Access difficult to anything but the
most basal end of the cochlea ...

— sO0 most measurements are made at
high frequencies.
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Laser Doppler Velocimetry

Laser

Glass
micra bead

Basilar
mermbrane

YWELOCITY [Wm k=)

200

200 F

100 F

G 8 10 12

FREGQUEMCY (kHz)

http://www.wadalab.mech.tohoku.ac.jp/bmldv-e.html
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Modern
measure-
ments of the
frequency
response of
the basilar
membrane

Consider the
frequency
response of a
single place
on the BM
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FIG. 10. A family of isointensity curves representing the gain (velocity
divided by stimulus pressure} of basilar-membrane responses to tone pips as
a function of frequency (abscissa) and intensity (parameter, in dB SPL). The
thick lineg at bottom indicates the average motion of the stapes {Ruggem
et al., 1990}). Data recorded in cochlea 1.13.



input/
output
functions
on the
basilar
membrane
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FIG. 7. Velocity-intensity functions of basilar-membrane responses to tones
with frequency equal to and lower than CF (10 kHz). The straight dashs;;g
line at right has a linear slope (1 dB/dB). R



Distortion product otoacoustic emissions

ePlay two tones simultaneously
into an ear

eRecord the sound in the ear
canal using a microphone

eCalculate the spectrum of the
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Innervation of the cochlea

Type H
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90-95% of afferents are myelinated, synapsing with a single inner hair cell (%ElC).



The cochlea as a filterbank

e Auditory nerve fibres do not differ with
centre frequency.

e So all tuning to frequency arises from the
filtering of the basilar membrane.

e Imagine that each auditory nerve fibre is
preceded by a bandpass filter.

e Then imagine many filters in parallel (a
filterbank) each feeding a single (or a
number of) auditory nerve fibres.

e place or tono-topic coding.

33



The auditory filter bank has three
special properties
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Sinusoidal frequency maps on to place in a quasi-logarithmic way
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Auditory filters vary with level
(they are nonlinear)
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Temporal coding
(up to = 5 kHz)

Information about stimulus frequency

is not only coded by which nerve fibres

are active (the place code) but also by
when the fibres fire (the time code).
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The firing of auditory nerve fibres is
synchronized to movements of the hair
cell cilia (at low enough frequencies)

Play transdct.mov 38



Auditory nerves tend to fire to low-frequency sounds
at particular waveform times (phase locking).

J Spikcs

\/ Time

Stimulus waveform (0.3 kHz)

Evans (1975389



But phase-locking is limited to
lower frequencies ...

e Synchrony of neural firing is strong
up to about 1-2 kHz.

e There is no evidence of synchrony
above 5 kHz.

e The degree of synchrony
decreases steadily over the mid-
frequency range.
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Simulating hair cell transduction at
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think of this last wave as driving the auditory nerve

(e.g., as the amount of neurotransmitter in the synaptic cleftj!



Simulating hair cell transduction at
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Simulating hair cell transduction at
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2000 Hz
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Simulating hair cell transduction at

4000 Hz
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Simulating hair cell transduction at
8000 Hz
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Neural stimulation to a low
frequency tone

olimulus
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